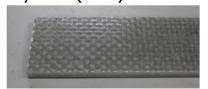
令和5年度 大阪地区橋梁技術発表会

FRP橋梁の現状と その耐久性

2023年10月20日

京都大学 北根 安雄

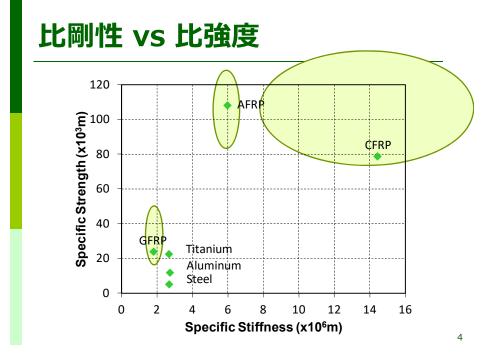
発表内容


- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

2

繊維強化プラスチック (FRP)

Fiber Reinforced Polymer (FRP)


- ・ 高い比剛性
- ・ 高い比強度
- 軽量性
- 高耐久性

土木構造物

歩道橋, 橋梁床版, 水門扉, 補強材・緊張材, 補修・補強材, 検査路 など

FRP材料の構造部材への適用への課題

- 初期コストが高い
- 設計基準が十分に整備されていない
- FRP材料に関して経験のある土木技術者 が少ない
- ■標準的な構造部材や部材断面,標準的な 構造形式などがない
- 接合形式に関する知見が少ない
- 耐久性に関するデータが少ない

日本の設計基準・マニュアル(1)

土木学会コンクリート委員会(1996): 連続繊維補強材を用いたコンクリート 構造物の設計・施工指針(案)

土木学会コンクリート委員会(2000): 連続繊維シートを用いたコンクリート 構造物の補修補強指針

6

日本の設計基準・マニュアル(2)

土木学会(2011):FRP歩道橋設計・施工指針(案), 複合構造シリーズ04.

土木学会(2014):FRP水門設計・施工指針(案)、複合構造シリーズ06.

日本の設計基準・マニュアル(3)

土木学会(2018):FRP接着による構造物の補修・補強指針(案),複合構造シリーズ09.

海外における設計基準・マニュアル(1)

- Structural Design of Polymer Composites: Eurocomp Design Code and Background Document, 1996
- Guide for the Design and Construction of Structures made of FRP pultruded Elements, CNR-DT 205, 2007
- AASHTO Guide Specifications for Design of FRP Pedestrian Bridges, 2008
- ASCE Pre-Standard for Load & Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures, 2011
- Prospect for new guidance in the design of FRP, Report EUR 27666 EN, 2016
- Design of fibre-polymer composite structures, CEN/TS 19101, 2022

海外における設計基準・マニュアル(2)

- ICE Design and Practice Guide: FRP Composites Life Extension and Strengthening of Metallic Structures, 2001
- Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures, Materials, RC and PC structures, masonry structures, CNR-DT 200/2004, 2004
- Guidelines for the design and construction of externally bonded FRP systems for strengthening existing structures, Metallic structures, CNR-DT 202/2005, 2007
- ACI 440.2R-08 Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, 2008
- AASHTO Guide Specifications for Design of Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements, 1st Edition, 2012

COT - Grant I and to a Total Tomassana V and to XAIPPAL EINLANCE CON VIII. ANY ROCK CONSULTED ON TREATMENT AND A TOTAL THE CONTROL CHIN.


Guidelines for the Design and Constructi of Externally Bondod F89 Systems for Strengthening Exhibing Structures Maratin structures

12

海外における設計基準・マニュアル(3)

- NCHRP Project 10-64
- Field Inspection of In-Service FRP Bridge Decks
- Published in 2006
- Available at http://onlinepubs.trb.org /onlinepubs/nchrp/nchrp _rpt_564.pdf

発表内容

- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

橋梁への適用箇所

- ■道路橋
 - □床版
 - □桁
 - □補強筋・緊張材
 - □補修•補強
 - □検査路, マンホール
- ■歩道橋

13

FRP床版の例

Hardcore Composites (VARTM)

Bedford Plastics (pultrusion)

Creative Pultrusions Inc.

(pultrusion)

Strongwell (pultrusion) Martin Marietta Composites (pultrusion)

Kansas Structural Composites, Inc. (open mold layup)

14

FRP床版の特徴

- 自重は, 通常のRC床版の10~20%
- ■施工は,数日以内で終了:施工期間の 大幅な短縮
- ■初期コストは、通常のRC床版の約2倍 程度

FRP桁の例

床版の取替

- 橋長: 49.2m ■ 幅員: 7.7m
- 14-in. (36 cm)厚のコン クリート床板の取替え

- 2000年に施工
- Martin Marietta Composites

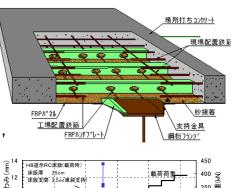
上部工架替

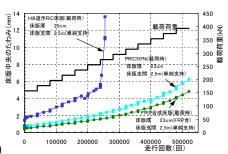
■ 橋長: 8.9m ■ 幅員: 8.5 m

- 2004年に施工
- Wagners Composite Fibre Technologies

架替 (McGee Bridge)

- 2009年8月施工
- University of Maine, "Bridge-in-a-backpack"
- スパン:28 ft.(8.5m), 幅員:25 ft.(7.6m)
- 9 アーチ (コンクリート充填 CFRPパイプ), FRP床板
- 12日で施工完了
- 5人の作業員と掘削機のみ


FRP合成床版


■ FRPを永久型枠とし て使用

■ コンクリート硬化後は. FRPも構造部材

- ■耐腐食性
- 軽量
- 高い疲労耐久性

施工実績:1997年以降,19橋 (宮地エンジニアリングHPより)

補強筋, 緊張材

- 新宮橋: CFRP製の緊張材が世界で初めて使用さ れたPC橋
- 石川県
- 1988年
- \$\phi\$12.5mm\$\phi\$ プリテンション 緊張材
- 橋長 6.1m, 全幅員 7.0m

CFRPプレートによる鋼トラス橋の補強

- 桜ノ目橋. 5径間ゲルバートラス(竣工1963年)
- 橋長:255m, 幅員:6m
- B活荷重対応
- 200×2100×t12mmのCFRPプレート(弾性係数 155GPa, 引張強度2400MPa)を下フランジ下面に接着
- 施工期間は約1週間. 鋼板ボルト添接工法の施工期間 45日に対し、大幅に短縮

25

CFRPシートによる腐食した鋼トラス橋 の補修

- 浅利橋, 鋼3径間連続ワーレントラス橋
- 橋長:約300m, 支間長:51m
- 山梨県·大月市
- 腐食した下弦材の補修
- 2007年

検査路

- 耐腐食性
- 軽量, 人力で運搬可能

駒瀬川橋(NEXCO中日本)

谷津川橋(NEXCO中日本)

マンホール

(http://www.miyaji-eng.co.jp/)

発表内容

- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

Aberfeldy歩道橋(英国)

- 英国スコットランド、アベルフェルディ・ゴルフ場、 1992年
- 斜張橋: 橋長113m(25m+63m+25m). 主塔高 さ18m, 幅員2.2m
- 斜ケーブル:ケブラ ー(アラミド繊維線 東), 桁•塔部材: GFRP引抜成形材

Middlebury Run公園橋(米国)

- 米国オハイオ州アクロン市. 2003年
- E.T.Techtonics社 Longspan Prestek System
- トラス歩道橋, 橋長:17.7m, 幅員:3.05m
- 1トンまでの車両は通 行可
- チャンネルや箱型の GFRP引抜成形規格品 の使用. 床版は木製
- 死荷重:約3.2 トン(鋼 橋9.1トンの約1/3の軽 量さ)

29

伊計平良川線ロードパーク橋(日本)

- 国内初のFRPを主構造材料とした実用橋
- 竣工:2000年3月,沖縄県
- 2径間連続GFRPプレートガーダー歩道橋
- 橋長:37.8 m(19.7 m+17.2m), 幅員:4.3m
- 橋梁部材:GFRP(主桁:ハンドレイアップ,床組:引 抜成形材), ボルト類: ステンレス, 高欄: GFRP

ものつくり大学第2連絡橋(日本)

- 竣工:2007年8月, 埼玉県(ものつくり大学構内)
- 3径間ポニーワーレントラス橋, 橋長:21m(4.7m+11.7m+4.7m), 有効幅員:2.7m
- GFRP引抜成形材:トラス部材, 横桁, 縦桁
- ガセットプレート (SUS304)とブラ インドリベット (SUS305)による リベット接合
- 木床版

羽咋巌門自転車道13号橋(日本)

- 旧橋(木橋)の腐食・割れによる架替
- 日本海海岸至近の厳しい腐食環境
- 竣工:2008年3月, 石川県
- FRP単純I桁橋, 橋長:11.3m, 幅員:3.94m
- 主桁·床版にGFRP引抜成形材

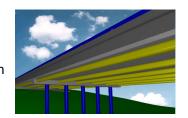
はまなす橋(日本)

- 竣工:2008年3月,京都府舞鶴市
- 旧橋(木橋)の腐食による架替,日本海海岸の厳しい腐食環境
- ラチス型ポニートラス橋, 橋長:18.1m, 幅員:3.66m
- E.T.Techtonics社のFRP歩道橋
- GFRP引抜成形材(チャンネル, 角管, 角棒)
- ボルトによる 支圧接合

玄若橋(日本)

- 竣工:2013年3月, 三重県四日市市
- 通学路にある歩道橋
- ポニーワーレントラス橋
- 橋長:18.5m, 幅員:2.0m
- GFRPハンドレイ アップ材・引抜 成形材 (溝形, 平板)

浦添大公園連絡橋(日本)


- 2019年10月,沖縄
- 単純箱桁橋, 橋長:18.5m, 幅員:2.5m
- 成形法:構造材(Vacuum Infusion), 高欄(引抜成形)
- GFRP
- 床版:GFRPプレート(幅2500mm, 厚さ37mm) 主桁:箱桁(上フランジ幅2070mm, 桁高さ460mm) 主桁の継手:接着接合

Kings Stormwater Channel Bridge (USA)

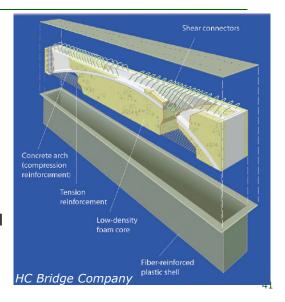
- UC San Diego, Alliant TechSystems, Inc., and Martin Marietta
- Span: 2 x 10 m, Width: 13 m
- Six longitudinal concrete filled carbon tube girders (carbon/epoxy system)
- GFRP deck panel (pultruded trapezoidal E-glass/epoxy tubes with a top skin layer

38

Toowoomba Bridge (Australia)

- University of Southern Queensland, Wagners Composite Fibre Technologies, and Huntsman Composites
- Span: 10 m, Width: 5.0 m
- Hybrid box beams : prefabricated concrete, GFRP, and CFRP

GFRP 450 CFRP (dimensions in mm)


High Road Bridge (USA)

- 2008年8月
- Lockport, IL
- Span: 57 ft.(17.4 m)
- Six 42 in. (1.067 m) deep HCBs spaced at 7 ft. 4 in. (2.23 m) centers, 8 in. (200 mm) thick RC deck
- Erection required only a 30-ton crane
- Partially funded by Innovative Bridge Research and Design (IBRD) Program

Hybrid Composite Beam

- GFRP shell
- Compression arch
- Galvanized steel prestressing strands
- Tied arch in an FRP box
- 90% of strength provided by concrete and steel
- Lightweight: 10% of concrete beam

世界のFRP道路橋一覧

橋梁名	竣工年	所在地	橋長(m)	橋梁形式
Ginzi	1982	ブルガリア	12	桁橋
Bonds Mill	1994	イギリス	8.2	箱桁橋
INEEL	1995	アメリカ	9.1	桁橋
Smith Road	1996	アメリカ	10.1	桁橋
Russel County	1996	アメリカ	7.1	床版橋
Tom's Creek	1997	アメリカ	5.3	桁橋
Laurel Lick	1997	アメリカ	6.1	桁橋
TECH 21	1997	アメリカ	9.7	箱桁橋
Muddy Run	1998	アメリカ	9.8	床版橋
Bennett's Creek	1998	アメリカ	7.8	床版橋
Dicky Creek	2001	アメリカ	11.9	桁橋
Eight Mile Road	2007	アメリカ	6.7	桁橋
Hoofdbrug Oosterwolde	2010	オランダ	12	床版橋
名称不明	2015	ポーランド	22	桁橋
名称不明	2016	ポーランド	10.7	桁橋
Nelson Mandela Alkmaar	2016	オランダ	22.5	床版橋
Grist Mill	2020	アメリカ	22.9	桁橋

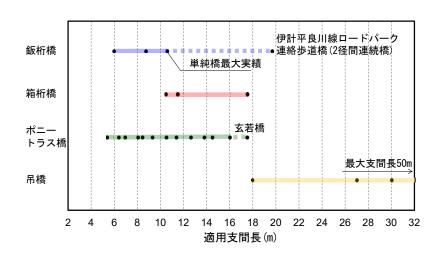
(Source: 佐藤顕彦氏の博士論文より)

発表内容

- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

土木学会:複合構造委員会「FRP複合構造の 設計・維持管理に関する調査研究小委員会」

- 西﨑到委員長
- 2017年7月~2023年3月
- 報告書「FRP複合構造の設計・維持管理に関する最新の調査報告」, 2023年10月
- WG活動
 - □ WG1: FRPの部材・材料の力 学特性および接合方法の評価
 - □ WG2:FRP複合構造の設計に 関する研究調査と試設計
 - □ WG3:FRP構造物の維持管理 方法に関する調査研究



FRP歩道橋の実績調査

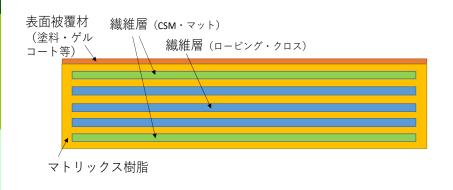
		模架概要				概葉長さ			株造諸元			HH	18大		20.21	年料諸 元	
emic	概要を		学標位置	學說年度	任用政	模長	支周長	兵斯教造	非板模造	銀子構造	FRP料の種類	##### <u>#</u>	材料強度	成形方法	保祈方法	新典問	25
かス	7	長野線地	福岡県北九州市	2014年3月	#14	W2 85mal, 11.0m	105m	GFRPプレート 幅3000mm/第37mm ※九管理事政語行可 対応	ボックス村 上フランジ稿 3000mm 相直 (60mm	接着接合	arno	引搭模性條款:309GPa 由/子學性係数:251GPa	引接:SSBMPa 曲1f:600Mpa	高權·引班成形 採版: VI形造 環境等: VI形造 形VI = Veous Infision (真空成型)	FEMNERS		5.5
クスに載		阿蘇贝普德旧FRP德	放本质阿蘇市	2014年11月	##	W1 8mal, 1208m	11.58m	OFRPプレート 種1270mmx準37mm	ポックス粉 上フランジ種 1270mm 密塞 450mm	淡等读含	QERP	引送弹性保数:339GPa 曲/F弹性保数:251GPa	引張:559MPa 曲げ:603Mpa	高權:引班城時 採版: 外形法 構造器: 外形法 涨VI=Woodum infusion (真空成型)	FEMIRAL		2
クス 1機		斯是公器平安橋	庶児島県南九州市	2015年3月	2倍額	W2 OnuL36 On	17.50m	GFRPプレート 種2000mm(第37mm	ポックス様 上フランジ編 2000mm 相高 381mm	接著接合	GFRP	引張彈性係数:28.5GPa 同订弹性係数:23.4GPa 圧縮彈性係数:31.9MPa	引接:550MPa 田17:557Mpa 圧縮:387MPa せん暦:209Mpa	高權·引進成形 定集·化制益 建進·化制益 进以I=Veous infusion (真空成型)	FEM:#BRT		,,
クス		水俣田釣舟鉄工所額地	整本集水保市	2016年12月	単純	W2 Onod_12 On	11.50m	GFRPプレート 幅2000mms(第37mm	ポックス桁 上フランジ機 2070mm 桁高 460mm	接着接合	QFRP	引張弹性係数:31.5GPs 由扩弹性係数:23.4GPs 圧縮弹性係数:33.6MPs	引接:550MPs 曲げ:537Mps 圧縮:387MPs せん間:209Mps	高模·引致或形 实版:Villida 模型 Villida (例Vi=Vecam infusion (真型质型)	FEMARRI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
ックス 1名		演览大公園連絡機	沖縄風波波市	2019年10月	## 	W2.5nuL18.5n	175m	OFRPプレート 種2500mm/第37mm	ポックス終 上フランフ組 2500mm 長高: 1050mm	推荐接合	GFRP	銀子彈性係数 2650Pa	引援: SOIMPa 曲If: 635Mpa	高權·引班成移 反叛: Villoba 環通符 Villoba 思VI==Vacuum infusion (真型成型)	FEMMEN		,
汉楷		甲川動物公園	皮烫条类 囊壳条布	2009#8.Я	P19	W20m×L14.3m	138m	再生不材	整理材付フーレン型ポニートラス GFRP引導材 [-200mm×50mm×10mm □-100mm×100mm×8mm 桁高:1530mm	ステンレス ポルト 接合	QFRP	銀子彈性係数 2120Pa	引援:365MPs 曲げ 451Mps 圧縮:368MPs せん間:135Mps	高模·引速成形 反逐 再生水材 模造材·引振成形	京理論 による 1911		
汉楷		せんだん書の理	版本與八代市	2010年3月	MM	W1.5m × L16.3m	160m	グレーテング (タジュサイズ Seera Seou Steen)	垂直材付ワーレン部ポニートラス GFRP引極材 [-200mm × 50mm × 10mm □-100mm × 100mm × 8mm 材面:1600mm	ステンレスポルト 接合	grap	銀行彈性係数 2470Pa	引接:350MPa 曲げ:531Mpa 圧縮:415MPa せん斯:132Mpa	高便 引張成形 反逐・パレーチング 構造材 引張成形	受理論による設計		4
ス概		パンナ公園 Dブーン1-2-3工図	炸嘴质石细市	2011年4月 2011年8月	単純	W1.5mx L9.8m (他12権有)	934m	OFRP31BLRF Ti 150mmx10mmx5mm	●原材付フーレン型ポニートラス GFRP引能材 [-200mm×100mm×10mm □-100mm×100mm×8mm 杯塞:1500mm	ステンレス ポルト 接合	QF RP	高/子弹性係数:2170Pa	引張 317MPs 自lf 42Mps 圧縮 641MPs セル斯 115Mps	高 權 引致或形 原 版 引致或形 概道符 引致或形	受理論 による 2021		

(Source: 複合構造レポート20, FRP 複合構造の設計・維持管理に関する最新の調査報告, 2023) 45

実績に基づく適用支間長

(Source: 複合構造レポート20, FRP 複合構造の設計・維持管理に関する最新の調査報告, 2023)

実績に基づくデータ


- 実績に基づく桁高支間比
- 実績に基づく橋面積-質量関係
- 実績に基づく重量-全体工事費関係

など

発表内容

- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

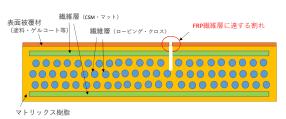
FRPの主な構成要素

※本報告書では、表面被覆材とマット層を「表面保護層」としている

FRP構成要素の劣化

土木構造物における FRPの主な変状(劣化・損傷)

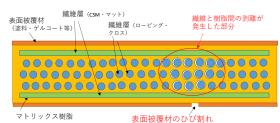
- 表面被覆材のひび 割れ
- ■表面被覆材の剥離
- 表面被覆材の白亜 化(チョーキング)
- ■表面被覆材の変色
- ふくれ
- ■生物付着


- ■繊維の露出
- FRP積層部の割れ
- ■白化
- 外力による損傷
- 表面保護層の摩耗・ 損耗
- 接合金属部品の腐食

49

劣化・損傷の事例:

FRP積層部の割れ



53

第2章

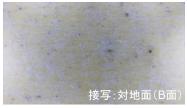
劣化·損傷の事例: 白化

54

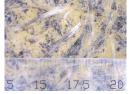
第2章

長期暴露されたGFRP引抜成形材

- 土木研究所つくば屋外暴露場
- FRP歩道橋床版
 - 23年間暴露
 - □ 引抜成形GFRP部材 幅650mm×高さ150mm 3室のボックス形状
 - □ ビニルエステル樹脂
 - □ Vf(暴露無し):45.7%
 - □ 表面被覆材なし
- FRP角パイプ
 - □ 24.6年間暴露
 - □ 引抜成形GFRP角パイプ
 - □ KP40:40x25x3x3 長さ500mm
 - □ 不飽和ポリエステル樹脂
 - □ Vf (暴露無し): 40mm幅の面:45.9% 25mm幅の面:49.6%
 - □ 塗装無と塗装有の2種類



長期暴露されたGFRP引抜成形材 外観観察(FRP床版)



長期暴露されたGFRP引抜成形材 デジタル顕微鏡 (FRP床版)

箱外側表面(洗浄後)

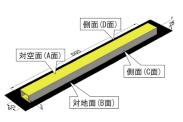
(a) 未暴露

(b) 暴露対空(A)面

(c) 暴露対地(B)面

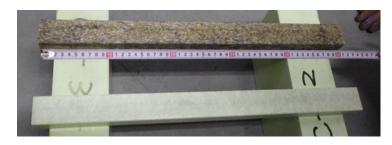
箱内側表面(洗浄後)

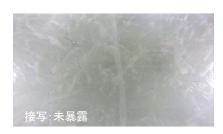
(a) 暴露対空(A)面

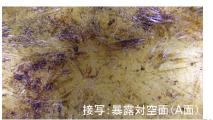

(b) 暴露対地(B)面

57

長期暴露されたGFRP引抜成形材 FRP角パイプ (KP40)

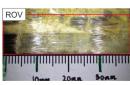

Painted/ Unpainted	Exposed/ Unexposed	Name	No. of Samples	
Unpainted(無塗装)	Unexposed(未暴露)	UU	6	
Unpainted(無塗装)	Exposed(暴露)	UE	17	
Painted(塗装)	Unexposed(未暴露)	PU	2	
Painted(塗装)	Exposed(暴露)	PE	3	





58

長期暴露されたGFRP引抜成形材 外観観察(FRP角パイプ)



長期暴露されたGFRP引抜成形材 接写写真観察(FRP角パイプ)

対空面(洗浄後)

(a) ROVの露出無

(b) 小規模なROVの露出

(c) 大規模なROVの露出

対地面(洗浄後)

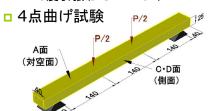
(a) CSMの露出無

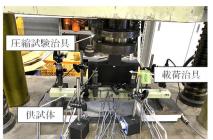
(b) CSMの露出あり

暴露GFRPの残存力学性能評価

(多くの試験体が塗装のないものであることに注意が必要)

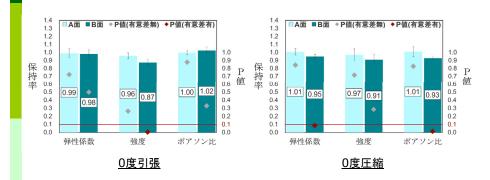
■ FRP床版


※材料試験の一部では、寸法制限により 試験片サイズJIS規格から変更している

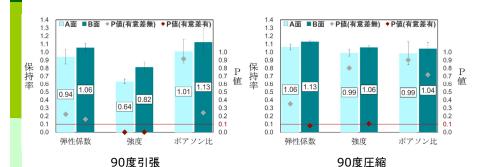

□材料試験

■ 0度引張(JIS K7164), 0度圧縮(JIS K7018), 90度引張(JIS K7164), 90度圧縮(JIS K7018), 45度引張(JIS K7019)

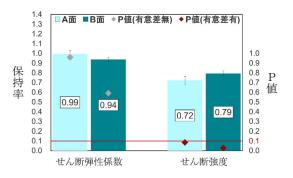
■ FRP角パイプ


- □材料試験
 - 0度引張(JIS K7164)

63

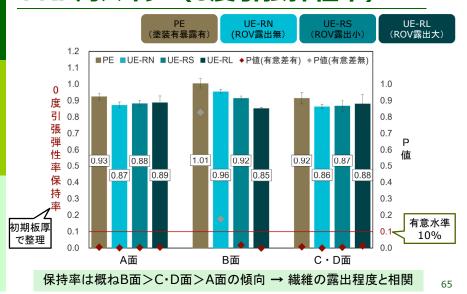

暴露GFRPの残存力学性能 FRP床版(0度方向)

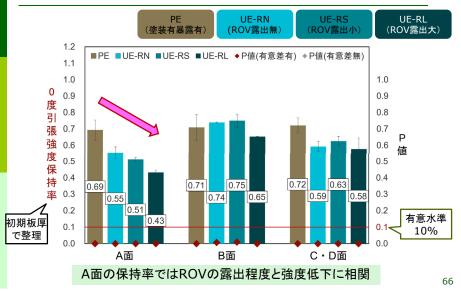
弾性率の変化は大きくない 強度は数%低下しており、B面の方が低下率が大きい


62

暴露GFRPの残存力学性能 FRP床版(90度方向)

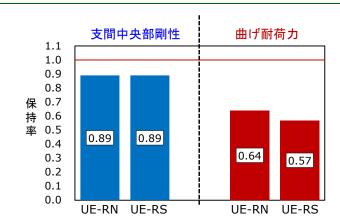
弾性率の変化は大きくない 引張強度は大きく低下しており、A面の方が低下率が大きい 圧縮強度が変化していない理由は不明


暴露GFRPの残存力学性能 FRP床版(45度引張)


45度引張

弾性率の変化は大きくない せん断強度は大きく低下している。A面B面の差は大きくない。

暴露GFRPの残存力学性能 FRP角パイプ (0度引張弾性率)



暴露GFRPの残存力学性能 FRP角パイプ (0度引張強度)

第5章

暴露GFRPの残存力学性能 FRP角パイプ (4点曲げ試験結果)

- ・剛性:UU未暴露供試体と比べ約11%程度のわずかな低下
- ・曲げ耐荷力は35%以上低下、耐荷力はUE-RS < UE-RN
 →板厚が小さかったことと、角部の内部破壊進行荷重が低かったため

表面補修後試験体暴露試験状況

- 土木研究所名護暴露試験場
- 2022年12月26日設置完了

テーブル1

テーブル2

発表内容

- ■はじめに
- ■FRPの橋梁での適用箇所
- ■FRP橋梁の事例
- ■FRP歩道橋の実績データ
- ■耐久性および維持管理
- ■まとめ

ご清聴ありがとうござました

69

まとめ

- 設計基準等は整備されつつあるが、1990年代に想定していたほど土木構造材料として普及が進んでいない。
- 耐腐食性に優れた材料としての特徴が注目されることが多いが、最も優れた特性は軽量性であり、それを活かした利用方法が増えていくと予想される.
- 普及の障壁となっている課題(材料規格,設計方法,接合方法,維持管理方法など)を今後解決していく必要がある.

70