2013年12月6日

鋼橋の耐震設計の現状と 想定外の被害の軽減に向けて

後藤 芳顯 名古屋工業大学 社会工学専攻

西宮港大橋 (1995.1) 兵庫県南部地震

講演の内容と視点

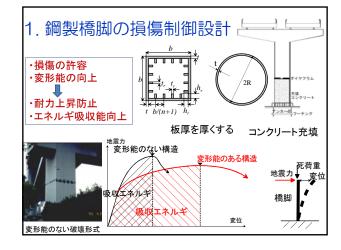
- 耐震設計の歴史と阪神大震災以後の設計法(現行)
- 今の耐震設計の妥当性は東日本大震災で検証されたか?
- 今の耐震設計は今後の大地震に対応できるか?
- 耐震設計の課題と名工大での取組の紹介

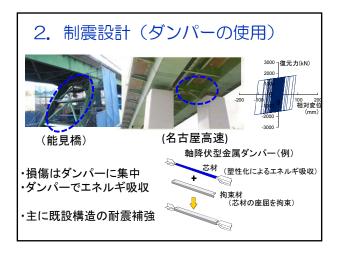
地震被害とともに変遷する耐震設計法

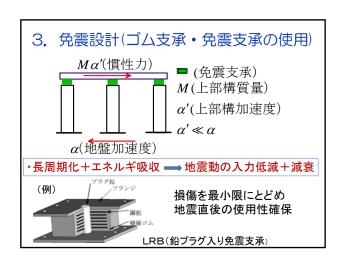
大正12年1923 関東大震災(過去最大の被害)

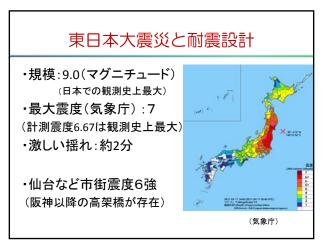
 大正15年1926 道路構造に関する細則案に耐震設計導入 (静的な照査=震度法)

昭和39年1964 新潟地震(液状化,落橋)

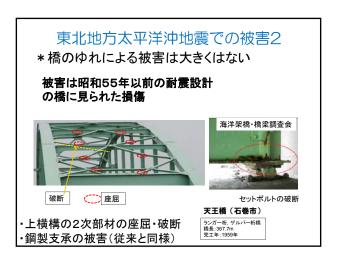

 昭和46年1971 道路橋耐震設計指針 (修正震度法、落橋防止、液状化の影響考慮)

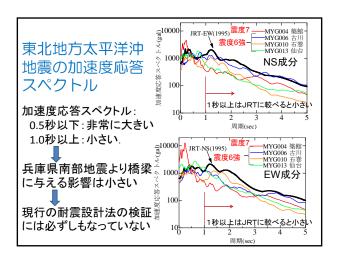

平成7年1995 阪神大震災(耐震構造に過去最大の被害)

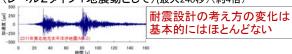

 平成8年1996 道路橋示方書V耐震設計編 (現在の耐震設計の考え方のもとになる大幅な変革)

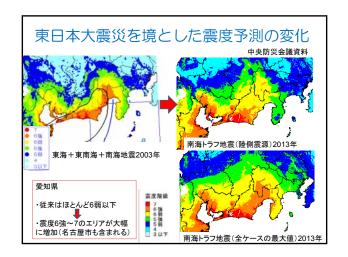

阪神大震災を契機とした耐震設計の変革

- 海溝型と直下型のレベル2地震動(極大地震)の考慮(設計用地震動の応答加速度は300galから最大2000galへ大幅な上昇)
- ·動的照査法の導入
 - =橋の地震時の動的挙動に基づく耐震性能の検証 (より実情に即した照査法)
- 損傷制御設計,制震設計,免震設計の積極的な導入
 (設計地震動の大幅上昇に対応するため)



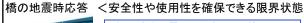



東日本大震災以後の 示方書の改訂 (平成24年)


- ・津波被害を考慮した構造計画(具体性はまだない)
 - *津波高さに対する桁下空間の確保
 - *津波の影響を受けない構造的工夫
 - * 上部構造が流出しても復旧が容易 (下部構造を守る)

・観測された継続時間の長い海溝型地震動考慮

(レベル2タイプ1地震動として)(最大240秒)(約4倍)


鋼橋の耐震性能照査の現状

地震工学

・代表的な既往最大レベルの水平1方向地震 動成分を橋軸と橋軸直角方向に独立に入力

鋼橋の数値モデルによる動的応答解析

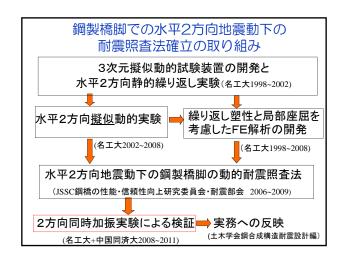
・水平1方向地震動に対する限界値(3方向地震動を受ける場合には適用不可)

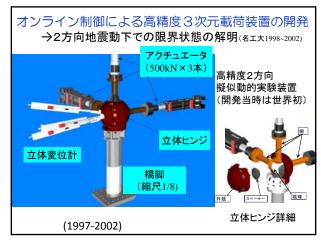
・地震工学の成果(地域地震動3方向成分)を 直接取り入れにくい体系

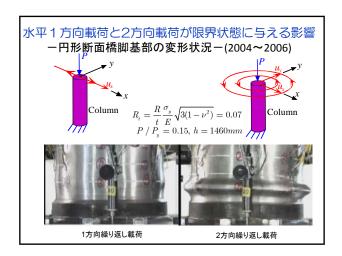
現行の耐震設計における問題点

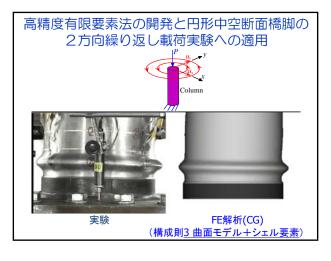
- 過去最大レベルの水平1方向地震動成分による 照査枠組み
- → 想定された地域地震動(サイト波, 3方向成分(NS+EW+UD))に対応した照査ができない
- 設計地震動を超える地震動が作用する場合に対する考慮がない
- ➡ 南海トラフ地震の極大地震動(中央防災会議 2013)は設計地震動を超える場合がある?

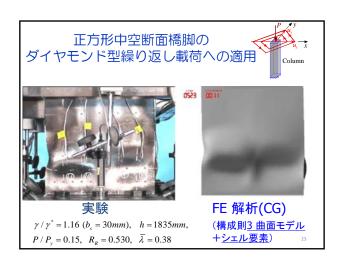
想定外の被害の発生

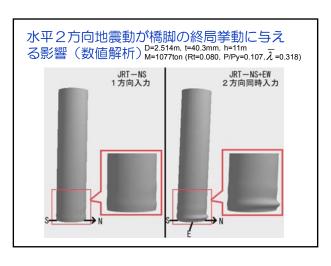

現行の耐震設計の課題への取組(名工大)

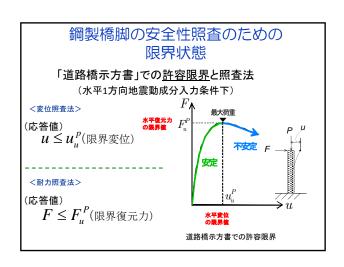

- ・水平2方向地震動成分(NS+EW)の同時入力を考慮 した耐震照査法の検討(鉛直地震動の影響小) (鋼製橋脚, CFT橋脚対象)
- ・想定を越える地震動が作用した場合を崩壊制御設 計の観点から検討

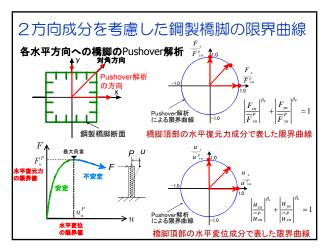

(防災の観点ではなく減災の観点から致命的な崩壊の防止)

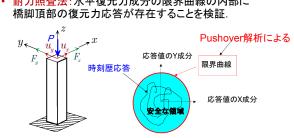

水平2方向地震動の連成を考慮した 鋼製橋脚の耐震照査法の検討 (現行の方法) 水平1方向地震動を橋軸と橋軸直角方向 に個別に入力して安全性を照査 危険側の照査となることはないか? (実際の地震動) (現行の耐震性照査の考え方) (3方向成分の同時入力) My. 橋脚 \xrightarrow{x} \wedge \wedge \wedge \xrightarrow{x} \wedge X **添軸直角方向入力 極軸方向入力** 鉛直動の影響小さい

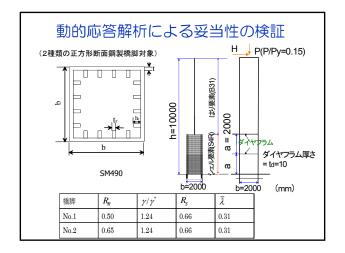

3





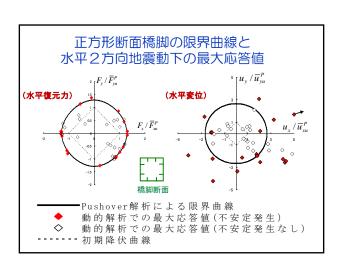


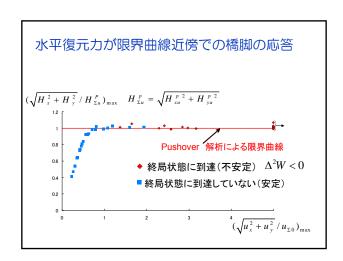


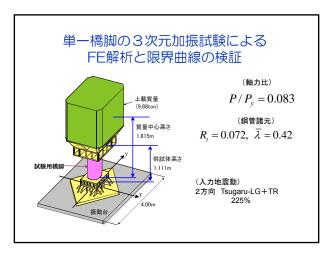


限界曲線を用いた水平2方向地震動下の 鋼製橋脚の動的安全性照査法

- 変位照査法:水平変位成分の限界曲線の内部に橋 脚頂部変位応答が存在することを検証.
- 耐力照査法:水平復元力成分の限界曲線の内部に

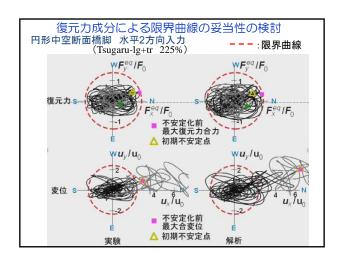


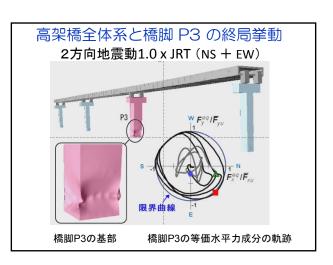

検証に用いた地震波

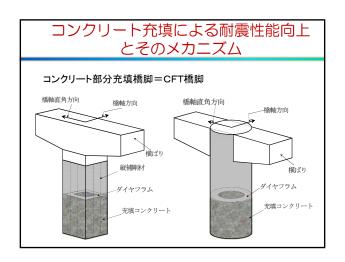

地震		観測点	ID
発生年	名称	戦例点	ID
1983	日本海中部地震	津軽大橋周辺地盤上	tsugaru
1995	兵庫県南部地震	神戸海洋気象台地盤上	JMA
		JR 西日本鷹取駅構内地盤上	JRT
		東神戸大橋周辺地盤上	HKB
1999	ChiChi 地震 (台湾)	PEER 草嶺	CHY080
2003	十勝沖地震	K-Net 直別	HKD086
2004	新潟県中越地震	K-Net 小千谷	NIG019

各種海溝型, 直下型

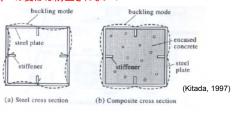
加速度振幅の増幅:0.2~3.0

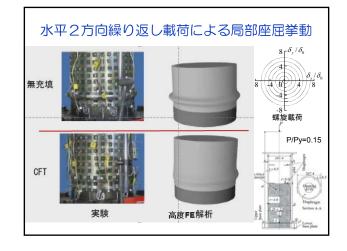


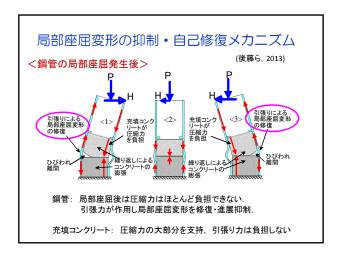


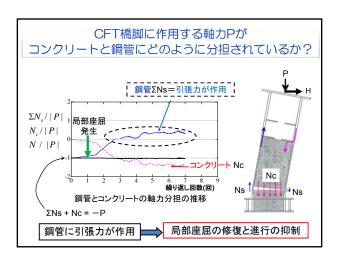


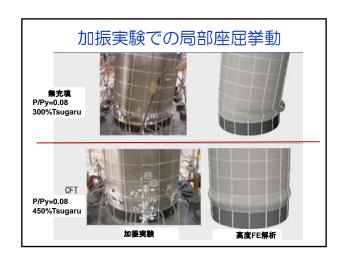
水平2方向地震動の同時入力を考慮した 鋼製橋脚の動的安全性照査法のまとめ

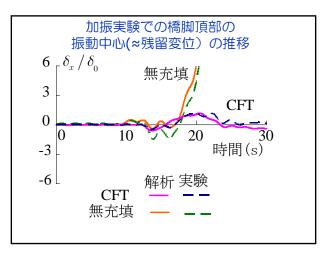

- 高架橋の場合は鉛直地震動の影響は小さい
- 構成則に3曲面モデルを用いたシェル要素によるFE 解析は橋脚の終局挙動を精度よく解析可能
- 橋脚頂部の2方向復元力成分で表した限界曲線を 用いた照査により耐震安全性の照査が可能

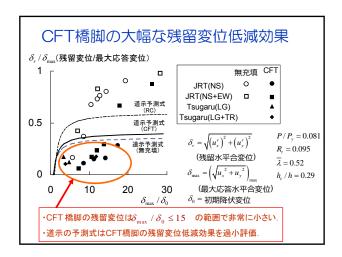


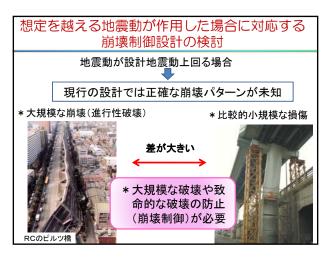

従来の考え方

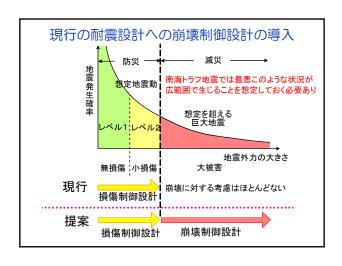

- ・鋼・コンクリートの合成効果による強度・剛性の向上
- ・鋼管+ダイヤフラムの拘束効果で充填コンクリートの強度向上
- ·鋼管の局部座屈変形の防止効果による変形能の向上
- 充填コンクリートによる内側への変形防止

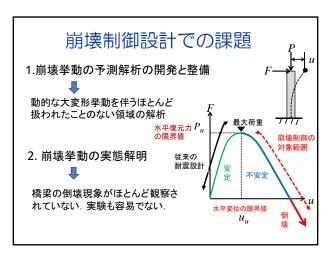

外側への変形は防止されない!

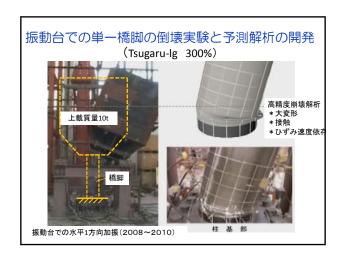


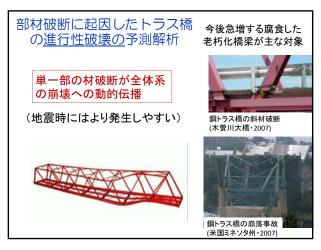


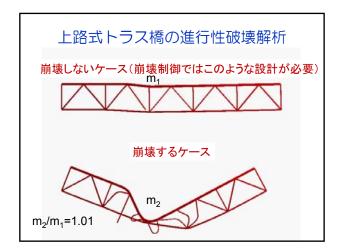


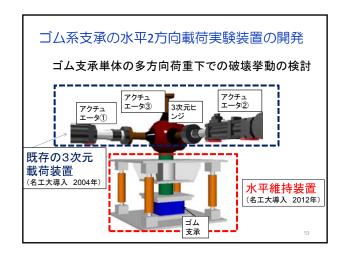


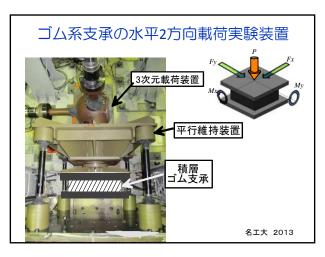


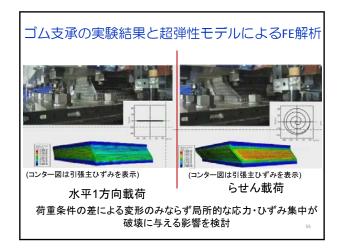


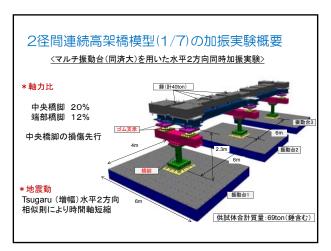










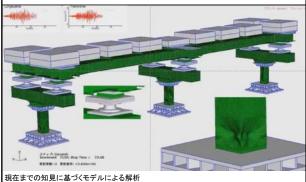




2径間連続高架橋模型の加振実験の目的

- 1. 橋脚の進行性破壊現象の再現と解明
- 2. 終局→倒壊時の橋脚, 支承, 桁などの連成挙動解明
- 3. 高架橋内でのゴム支承の挙動解明
- 4. 高架橋の解析モデルの高精度化のためのデータ収集

4機の振動台からなるマルチ振動台MTS(同済大)


2径間連続高架橋模型の 加振実験ケース

- 橋脚(5種類)
 - a) 無充填(円形断面,正方形断面)
 - b) コンクリート充填(CFT)(円形断面, 正方形断面)
- ゴム支承各橋脚の種類ごとに準備
- 上部構造+橋脚横ばり 共通

実験シミュレーションの例 (無充填正方形断面鋼製橋脚, Tsugaru 230%水平2方向成分)

今後の予定(2013年度)

4種類の橋脚を持つ連続高架橋の加振実験・崩壊実験 2013年 10月中旬~2014年 2月末

以下のサイトで実験内容と結果の概要逐次公開 (名エ大の耐震エ学・構造工学研究室)

http://kozo4.ace.nitech.ac.jp/Shaking-Table-Test/

まとめ

- 過去の大震災を教訓にしたわが国の耐震設計は高い レベルにあるが、将来の極大地震に対応するための 課題は多く残っている。
- ・ 想定された3方向地震動成分(サイト波)の同時入力 に直接対応できる耐震性照査の枠組が必要である.
- ・ 過去最大級の地震動に基づく現行の耐震設計(防災 の観点からの損傷制御設計)のみではまた想定外の 被害が発生する可能性がある.
 - ➡ 減災の観点からの崩壊制御設計も必要